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Abstract

Dynamic response analysis is presented for a Reissner–Mindlin plate with four free edges resting on a tensionless elastic

foundation of the Winkler-type and Pasternak-type. The mechanical loads consist of transverse partially distributed

impulsive loads and in-plane static edge loads while the temperature field is assumed to exhibit a linear variation through

the thickness of the plate. The material properties are assumed to be independent of temperature. The two cases of initially

compressed plates and of initially heated plates are considered. The formulations are based on Reissner–Mindlin first-

order shear deformation plate theory and include the plate–foundation interaction and thermal effects. A set of admissible

functions is developed for the dynamic response analysis of moderately thick plates with four free edges. The Galerkin

method, the Gauss–Legendre quadrature procedure and the Runge–Kutta technique are employed in conjunction with this

set of admissible functions to determine the deflection-time and bending moment–time curves, as well as shape mode

curves. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the

contact region. The numerical illustrations concern moderately thick plates with four free edges resting on tensionless

elastic foundations of the Winkler-type and Pasternak-type, from which results for conventional elastic foundations are

obtained as comparators. The results confirm that the plate will have stronger dynamic behavior than its counterpart when

it is supported by a tensionless elastic foundation.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of plates on elastic foundations have been motivated by the need in engineering to design, for
example, mat and raft foundations, pavement slabs of roads and airfield. These problems are usually analyzed
by assuming that the foundation reacts in compression as well as in tension [1]. This assumption that the
contact between the plate and its support is established continuously simplifies the problem. However, it is well
known that in many practical cases, this assumption is questionable. Some supporting media cannot
sometimes provide tensile reaction and, under certain conditions, some portions of the plate may lift-off.
Therefore, a tensionless foundation, where the reaction is only compressive, is modelled. The plates resting on
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a tensionless foundation is complicated because the location and extent of the contact regions are not known
at the outset. Since the stresses and deformations of the plate and foundation depend on the contact area and
therefore on its unknown boundaries, these boundaries are, along with other mechanical quantities, part of the
solution, being the primary unknowns of the problem. So, even for cases involving linear foundation models
and linear plate theories, the problem is nonlinear by virtue of unilateral constraints and therefore needs to be
solved iteratively.

Many linear bending studies for thin and moderately thick, circular and rectangular plates resting on a
tensionless elastic foundation are available in the literature see, for example, Refs. [2–13]. They concluded that
the contact region remains constant and is independent of the load level. In contrast, Khathlan [14] and Hong
et al. [15] studied the large deflections of circular plates resting on a tensionless elastic foundation of the
Winkler-type and concluded that as the transverse load increases the contact area tends to expand until full
contact is reached. Recently, Guler [16] presented a bending analysis for a thin circular plate subjected to
concentrated central and distributed loads and resting on a tensionless elastic foundation of the Pasternak-
type. Also recently, Shen and Yu [17] gave a nonlinear bending analysis for a rectangular plate with four free
edges subjected to thermomechanical loads and resting on a tensionless elastic foundation of the Pasternak-
type. In this study, the formulations were based on the first-order shear deformation plate theory and the
effect of initial in-plane compressive load and initial temperature variation on the nonlinear bending behavior
was reported. However, the dynamic analysis for a plate resting on tensionless elastic foundations is limited in
number. Celep and Turhan [18], and Guler and Celep [19], and Celep and Guler [20] studied, respectively, the
dynamic responses of flexible and rigid circular plates subjected to time dependent external moment and/or
transverse loads and resting on a tensionless elastic foundation of the Winkler-type. They concluded that the
extent of the contact region and deflections of the plate depending on the loading combination and on time.
However, in their studies the formulations were based on the Kirchhoff–Love hypothesis and therefore the
transverse shear deformations were not accounted for. To the best of the authors’ knowledge, there is no
literature covering dynamic response of shear deformable rectangular plates resting on a tensionless elastic
foundation of Pasternak-type.

The present study extends the previous works [1,17] to the case of moderately thick rectangular plates with
four free edges resting on a tensionless elastic foundation of the Pasternak-type. It is worth to note that in the
case of two-parameter foundation model there are two different types of boundary conditions for partial
contact and complete contact [21]. For the complete contact, a boundary force appears as a result of the
second parameter of the foundation, whereas in the case of partial contact there is no boundary force like that.
Therefore, only the partial contact case is considered in the present study. In such a case the plate may lift off
the foundation and no boundary force occurs. The mechanical loads consist of transverse partially distributed
impulsive loads and in-plane static edge loads while the temperature field is assumed to exhibit a linear
variation through the thickness of the plate. The material properties are assumed to be independent of
temperature. The two cases of initially compressed plates and of initially heated plates are considered. The
formulations are based on Reissner–Mindlin first-order shear deformation plate theory and include the
plate–foundation interaction and thermal effects. A set of admissible functions, which satisfy both geometrical
and natural boundary conditions, are developed for the dynamic responses analysis of moderately thick plates
with four free edges. The Galerkin method, the Gauss–Legendre quadrature procedure and the Runge–Kutta
technique are employed in conjunction with this set of admissible functions to determine the deflection-time
and bending moment–time curves, as well as shape mode curves. An iterative scheme is developed to obtain
numerical results without using any assumption on the shape of the contact region. Numerical results are
presented in dimensionless graphical form to illustrate the effect of the tensionless character of the foundation.

2. Analytical formulations

Consider a rectangular thick plate with four free edges of length a, width b and thickness h, which rests on,
but is not attached to, a tensionless elastic foundation. Let X, Y and Z be a set of coordinates with X and Y

axes located in the middle plane of the plate and the Z axis pointing downwards. The origin of the coordinate
system is located at the center of the plate in the middle plane. The plate is exposed to a stationary temperature
field T (X, Y, Z) and/or transverse dynamic patch load qðt̄Þ in the shaded region, as shown in Fig. 1, combined
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with in-plane static edge loads Px in the X-direction and Py in the Y-direction. The components of
displacement of the middle surface along the X, Y and Z axes are designated by Ū ; V̄ and W̄ : C̄x and C̄y are
the mid-plane rotations of the normals about the Y and X axes, respectively. The foundation is represented by
a two-parameter foundation model, that is, the reaction of the foundation is assumed to be
p ¼ K̄1W̄ � K̄2r

2W̄ , where p is the force per unit area, K̄1 is the Winkler foundation stiffness, K̄2 is a
constant showing the effect of the shear interactions of the vertical elements, r2 is the Laplace operator in X

and Y. This reaction, however, is only compressive and occurs only where p is positive. Let F̄ (X, Y) be the
stress function for the stress resultants defined by N̄x ¼ F̄ ;yy; N̄y ¼ F̄ ;xx and N̄xy ¼ �F̄ ;xy, where a comma
denotes partial differentiation with respect to the corresponding coordinates.

From Reissner–Mindlin plate theory considering the first-order shear deformation effect, including
plate–foundation interaction and thermal effects, the equations of motion of such plates are

~L11ðC̄xÞ þ ~L12ðC̄yÞ þ ~L13ðW̄ Þ þ ~L14ðW̄ Þ þHðW̄ Þ½K̄1W̄ � K̄2r
2W̄ � þ r2M̄

T
¼ q, (1)

~L21ðC̄xÞ þ ~L22ðC̄yÞ þ ~L23ðW̄ Þ þ ~L24ðC̄xÞ þ ðM̄
T
Þ;x ¼ 0, (2)

~L31ðC̄xÞ þ ~L32ðC̄yÞ þ ~L33ðW̄ Þ þ ~L34ðC̄yÞ þ ðM̄
T
Þ;y ¼ 0, (3)

r4F̄ þ ð1� nÞr2N̄
T
¼ 0. (4)

Because the plate is not attached to the foundation, tensile stresses cannot occur between plate and foundation
and therefore the plate may lift off the foundation over certain intervals. In the case of partial contact, no
concentrated edge reactions occur as reported in Ref. [21], and a compressive reaction arises when there is
contact between the plate and the foundation, no reaction comes into being when a separation develops. This
character of the foundation is taken into account by introducing a contact function defined by

HðW̄ Þ ¼
1 for p ¼ K̄1W̄ � K̄2r

2W̄40;

0 for p ¼ K̄1W̄ � K̄2r
2W̄p0;

(
(5)

and the linear operators ~LijðÞ are defined by

~L11ðÞ ¼ �k2Gh
q
qX

; ~L12ðÞ ¼ �k2Gh
q
qY

,
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Fig. 1. Rectangular plate subjected to a partially distributed impulsive load.
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L13ðÞ ¼ � k2GhþNX

� � q2

qX 2
þ k2GhþNY

� � q2

qY 2

� �
,

~L21ðÞ ¼ k2Gh�D
q2

qX 2
þ

1� n
2

q2

qY 2

� �
; ~L23ðÞ ¼ k2Gh

q
qX

,

~L31ðÞ ¼ ~L22ðÞ ¼ �
1þ n
2

D
q2

qXqY
; ~L32ðÞ ¼ k2Gh�D

1� n
2

q2

qX 2
þ

@2

@Y 2

� �
,

~L33ðÞ ¼ k2Gh
q
qY

; ~L14ðÞ ¼ I1
q2

qt̄2
; ~L24ðÞ ¼ ~L34ðÞ ¼ I3

q2

qt̄2
,

r2ðÞ ¼
q2

qX 2
þ

q2

qY 2
; r4ðÞ ¼

q4

qX 4
þ 2

q4

qX 2qY 2
þ

q4

qY 4
, ð6aÞ

where

ðI1; I3Þ ¼

Z h=2

�h=2
rð1;Z2ÞdZ, (6b)

and D is flexural rigidity and D ¼ Eh3=½12ð1� n2Þ�. E is Young’s modulus, G is the shear modulus and n is
Poisson’s ratio. Also k2 is the shear factor, which accounts for the non-uniformity of the shear strain
distribution through the plate thickness. For Reissner plate theory k2 ¼ 5=6, while for Mindlin plate theory
k2 ¼ p2=12:

If all four edges of the plate are free, for the partial contact case, the boundary conditions are
X ¼ �a=2:

M̄x ¼ D
qC̄x

qX
þ n

qC̄y

qY

� �
� M̄

T
¼ 0, (7a)

M̄xy ¼
1� n
2

D
qC̄x

qY
þ

qC̄y

qX

� �
¼ 0, (7b)

Q̄x ¼ k2Gh C̄x þ
qW̄

qX

� �
¼ 0, (7c)

Z þb=2

�b=2
N̄x dY þ sxbh ¼ 0, (7d)

Y ¼ �b=2 :

M̄y ¼ D n
qC̄x

qX
þ

qC̄y

qY

� �
� M̄

T
¼ 0, (7e)

M̄xy ¼
1� n
2

D
qC̄x

qY
þ
@C̄y

@X

� �
¼ 0, (7f)

Q̄y ¼ k2Gh C̄y þ
qW̄

qY

� �
¼ 0, (7g)

Z þa=2

�a=2
N̄ydX þ syah ¼ 0, (7h)

where sx and sy are the average compressive stresses in the X- and Y-directions, M̄x and M̄y are the bending
moments per unit width and per unit length of the plate, and Q̄x and Q̄y are the transverse shear forces,
respectively.
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For the initially heated plate, it is assumed that sx ¼ sy ¼ 0 and the temperature field is assumed to be a
linear variation through the plate thickness, i.e.

TðX ;Y ;ZÞ ¼ T0 1þ C
Z

h

� �
, (8)

in which T0 and C denote the temperature amplitude and gradient, respectively.
The thermal force and moments caused by the temperature field T(X, Y, Z) are defined by

ðN̄
T
; M̄

T
Þ ¼

Ea
1� n

Z þh=2

�h=2
ð1;ZÞTðX ;Y ;ZÞdZ, (9)

where a is the thermal expansion coefficient of a plate.

Because of Eqs. (8) and (9), it is noted that the temperature does not vary in X and Y, then thermal force N̄
T

and moment M̄
T
are constants, so that the boundary conditions of Eqs. (7a) and (7e) are non-homogeneous,

but in Eqs. (1)–(4) r2M̄
T
¼ r2N̄

T
¼ ðM̄

T
Þ;x ¼ ðM̄

T
Þ;y ¼ 0.

For the initially compressed plate, it is assumed that N̄
T
¼ M̄

T
¼ 0, now the boundary conditions of Eqs.

(7a) and (7e) become homogeneous.

3. Analytical method and solution procedure

Before proceeding, it is convenient first to define the following dimensionless quantities for such plates (in
which the alternative forms k1 and k2 are not needed until the numerical examples are considered)

x ¼ pX=a; y ¼ pY=b; b ¼ a=b; g ¼ p2D=a2k2Gh; ðn1; n2Þ ¼ ð1� n; 1þ nÞ=2,

W ¼ W̄ ½12ð1� n2Þ�1=2=h; ðCx;CyÞ ¼ ðC̄x; C̄yÞa½12ð1� n2Þ�1=2=ph,

F ¼ F̄=D; ðQx;QyÞ ¼ ðQ̄x; Q̄yÞa½12ð1� n2Þ�1=2=pk2Gh2; y ¼
ffiffiffiffiffi
12
p

a=ph,

ðMx;My;Mxy;M
TÞ ¼ ðM̄x; M̄y; M̄xy; M̄

T
Þa2½12ð1� n2Þ�1=2=p2Dh,

ðK1; k1Þ ¼ ða
4; b4
ÞK̄1=p4D; ðK2; k2Þ ¼ ða

2; b2
ÞK̄2=p2D; t ¼ ðt̄p=aÞ½E=rð1� n2Þ�1=2,

lq ¼ qa4½12ð1� n2Þ�1=2=p4Dh; ðlx; lyÞ ¼ ðsxb2;sya2Þh=4p2D. ð10Þ

Eqs. (1)–(4) may then be written in dimensionless form as

L11ðCxÞ þ L12ðCyÞ þ L13ðW Þ �HðW Þ½K1W � K2r̄
2
W � þ lq ¼ L14ðW Þ, (11)

L21ðCxÞ þ L22ðCyÞ þ L23ðW Þ �MT
;x ¼ L24ðCxÞ, (12)

L31ðCxÞ þ L32ðCyÞ þ L33ðW Þ �MT
;y ¼ L34ðCyÞ, (13)

r̄
4
F ¼ 0, (14)

where

L11ðÞ ¼
1

g
q
qx
; L12ðÞ ¼

b
g

q
qy
; L13ðÞ ¼

1

g
þ lx

� �
q2

qx2
þ

1

g
þ lyb

2

� �
q2

qy2
,

L14ðÞ ¼ y2
q2

qt2
; L21ðÞ ¼

q2

qx2
þ n1b

2 q2

qy2

� �
�

1

g
; L23ðÞ ¼ �

1

g
q
qx

,

L31ðÞ ¼ L22ðÞ ¼ n2b
q2

qxqy
; L32ðÞ ¼ n1

q2

qx2
þ b2

q2

qy2

� �
�

1

g
; L33ðÞ ¼ �

b
g

q
qy

,

L34ðÞ ¼ L24ðÞ ¼
q2

qt2
,
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r̄
2
ðÞ ¼

q2

qx2
þ b2

q2

qy2
; r̄

4
ðÞ ¼

q4

qx4
þ 2b2

q4

qx2qy2
þ b4

q4

qy4
. (15)

The boundary conditions of Eq. (7) become
x ¼7p/2:

Mx ¼
qCx

qx
þ nb

qCy

qy

� �
�MT ¼ 0 ðfor initially heated plateÞ, (16a)

Mx ¼
qCx

qx
þ nb

qCy

qy

� �
¼ 0 ðfor initially compressed plateÞ, (16a0)

Mxy ¼ n1 b
qCx

qy
þ

qCy

qx

� �
¼ 0, (16b)

Qx ¼ Cx þ
qW

qx

� �
¼ 0, (16c)

1

p

Z þp=2
�p=2

b2
q2F
qy2

dy ¼ 0 ðfor initially heated plateÞ, (16d)

1

p

Z þp=2
�p=2

b2
q2F

qy2
dyþ 4lxb

2
¼ 0 ðfor initially compressed plateÞ, (16d0)

y ¼7p/2:

My ¼ n
qCx

qx
þ b

qCy

qy

� �
�MT ¼ 0 ðfor initially heated plateÞ, (16e)

My ¼ n
qCx

qx
þ b

qCy

qy

� �
¼ 0 ðfor initially compressed plateÞ, (16e0)

Mxy ¼ n1 b
qCx

qy
þ

qCy

qx

� �
¼ 0, (16f)

Qy ¼ Cy þ
qW

qx

� �
¼ 0, (16g)

1

p

Z þp=2
�p=2

q2F
qx2

dx ¼ 0 ðfor initially heated plateÞ, (16h)

1

p

Z þp=2
�p=2

q2F

qx2
dxþ 4ly ¼ 0 ðfor initially compresses plateÞ, (16h0)

Applying Eqs. (11)–(16), the dynamic responses of an initially compressed or initially heated Reissner–Mindlin
plate with four free edges subjected to thermomechanical loading and resting on a tensionless elastic
foundation of the Pasternak-type is now determined by means of an analytical-numerical method. It is
assumed that the solutions of Eqs. (11)–(13) are

W ðx; y; tÞ ¼W IðtÞ þW IIðx; tÞ þW IIIðy; tÞ þW IVðx; y; tÞ, (17a)

Cxðx; y; tÞ ¼ CxIIðx; tÞ þCxIVðx; y; tÞ, (17b)

Cyðx; y; tÞ ¼ CyIIIðy; tÞ þCyIVðx; y; tÞ, (17c)
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where

W I tð Þ ¼ A00 tð Þ, (18a)

W II x; tð Þ ¼
X

m¼1;2;...

Am0 tð Þ cos 2mxð Þ þ
2m2 �1ð Þm

g1m

x2

� �
, (18b)

W III y; tð Þ ¼
X

n¼1;2;...

A0n tð Þ cos 2nyð Þ þ
2n2b2 �1ð Þn

g2n

y2

� �
, (18c)

W IV x; y; tð Þ ¼
X

m;n¼1;2;...

Amn tð Þ
�1ð Þmþ1g1m nm2 þ n2b2

� �
nm2g3mn

cos 2mxð Þ

"

þ
�1ð Þmþ1g2n m2 þ nn2b2

� �
nn2b2g3mn

cos 2nyð Þ þ cos 2mxð Þ cos 2nyð Þ

þ
2 �1ð Þmþnþ1n2b2

ng3mn

x2 þ
2 �1ð Þmþnþ1m2

nb2g3mn

y2

#
, ð18dÞ

CxII x; tð Þ ¼
X

m¼1;2;...

Am0 tð Þ
2m

g1m

sin 2mxð Þ �
4m2 �1ð Þm

g1m

x

� �
, (18e)

CxIV x; y; tð Þ ¼
X

m;n¼1;2;...

Amn tð Þ
2 �1ð Þmþ1g1mm nm2 þ n2b2

� �
nm2g2ng3mn

sin 2mxð Þ

"

þ
2m

g3mn

sin 2mxð Þ cos 2nyð Þ þ
4 �1ð Þmþnn2b2

ng3mn

x

�
, ð18fÞ

CyIII y; tð Þ ¼
X

n¼1;2;...

A0n tð Þ
2n

g2n

sin 2nyð Þ �
4n2b �1ð Þn

g2n

y

� �
, (18g)

CyIV x; y; tð Þ ¼
X

m;n¼1;2;...

Amn tð Þ
2 �1ð Þmþ1g2nnb m2 þ nn2b2

� �
nn2b2g2ng3mn

sin 2nyð Þ

"

þ
2nb
g3mn

cos 2mxð Þ sin 2nyð Þ þ
4 �1ð Þmþnm2

nb2g3mn

y

#
, ð18hÞ

in which

g1m ¼ 4m2gþ 1, (19a)

g2n ¼ 4n2b2gþ 1, (19b)

g3mn ¼ 4m2gþ 4n2b2gþ 1. (19c)

As argued before the partial contact case is only considered in the present study, it is evident that the
solutions (17)–(29) satisfy boundary conditions of Eq. (16), and no additional boundary force conditions need
to be satisfied. Moreover, the symmetry of the plate configuration and its loading are also considered in the
assumption (18). The coefficients A00(t), A01(t) etc. reflect the time dependency of the displacement functions
and they are to be determined next.

Substituting the displacement functions (17)–(19) into Eqs. (11)–(13) yields a set of differential equations in
the generalized coordinates

M €Uþ KU ¼ F, (20)
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where the dots denote the differentiation with respect to the non-dimensional time t.
In Eq. (20) K ¼ [kij] (i ¼ 1, 2, 3, j ¼ 1–12) is the stiffness matrix, and M ¼ [mij] (i ¼ 1, 2, 3, j ¼ 1–12) is the

mass matrix, the details of which can be found in Appendix. Also in Eq. (20) U is the displacement vectors and
F is the load vector, they are

U ¼ A00ðtÞ A01ðtÞ A02ðtÞ . . .A10ðtÞ A20ðtÞ . . .A11ðtÞ A12ðtÞ . . .A21ðtÞ A22ðtÞ . . .½ �
T, (21a)

F ¼ �lq MT
;x MT

;y

h iT
. (21b)

Then we use Galerkin method and Gauss–Legendre quadrature procedure to solve these equations. The
plate area is discretized into a series of grids and the integration has to be carried out over the entire plate, i.e.Z

M €U þ KU
� �

dwðxj ; yjÞdcxðxj ; yjÞdcyðxj ; yjÞdxdy

¼

Z
Fdwðxj ; yjÞdcxðxj ; yjÞdcyðxj ; yjÞdxdy ðfor j ¼ 1; 2; 3; . . .Þ, ð22Þ

where w(xj, yj), cx(xj, yj) and cy(xj, yj) are deflection and notations at the grid coordinate (xj, yj) and
summation is carried out over all grid coordinates by using the Gauss–Legendre quadrature procedure. Since
the coefficients of the differential equations are time dependent, the above equations are highly nonlinear,
although it has the appearance of regular linear differential equations of second order.

It is found that an acceptable accuracy can be obtained by taking into account 24� 24 points,
which is employed in the next section. Furthermore, the differential equation (20) was solved by applying
the Runge–Kutta method in the time domain. The contact region was first obtained at the static loading
and at the initial configuration of the plate, and was updated at every step by using the displacement
function of the previous step and checking whether a contact or a separation has developed between the plate
and foundation.

4. Numerical results and discussion

Numerical results are presented in this section for initially compressed or initially heated moderately thick
plates with four free edges resting on a tensionless elastic foundation of both Winkler-type and Pasternak-
type. The results for conventional elastic foundations are obtained as comparators in the manner described
previously and detailed further in Shen et al. [1]. The transverse loading q(x, y, t) ¼ q0f1(x, y)f2(t) is applied,
where q0 is the maximum amplitude, f1(x, y) is a unit function in space domain and f2(t) is an impulsive shape
function in time domain which may be any one of the following types:

(1) sudden load

f 2ðtÞ ¼
0 ðt ¼ 0Þ;

1 ðt40Þ;

(
(23a)

(2) step load

f 2ðtÞ ¼
1 ð0ptpt1Þ;

0 ðt4t1Þ;

(
(23b)

(3) triangular load

f 2ðtÞ ¼
1�

t

t1
ð0ptpt1Þ;

0 ðt4t1Þ:

8<
: (23c)

A parametric study was undertaken for a moderately thick square plate with b/h ¼ 10 resting on elastic
foundations. The impulsive central patch load is applied on the top surface of the plate in the shaded region
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(Fig. 1). The load area is taken to be a1/a ¼ b1/b ¼ 0.5, except for Fig. 4. The typical results are plotted in
Figs. 2–8, for which the dynamic load is assumed to be a suddenly applied uniform load with q0 ¼ 1.0 kPa,
except for Fig. 3. It should be appreciated that in all these figures t ¼ ðt̄p=aÞ½E=rð1� n2Þ�1=2, W ¼

W̄Eah
�

q0b3 and Mx ¼ M̄X a2
�

q0b2h2 mean the dimensionless forms of, respectively, time, central
deflection and bending moment of the plate, i.e. at the point (X, Y) ¼ (0, 0). For all of the examples,
E ¼ 35GPa, n ¼ 0.15, r ¼ 2000 kg/m3, a ¼ 1.0� 10�5/1C, and the transverse shear correction factor is taken
to be k2 ¼ 5/6.

Fig. 2 gives effect of the foundation stiffness on dynamic behaviors of a moderately thick plate subjected to
a suddenly applied central patch load alone and resting on elastic foundations. The stiffnesses are (k1,
k2) ¼ (10, 1) for a Pasternak-type elastic foundation and (k1, k2) ¼ (5, 0) and (10, 0) for Winkler-type elastic
foundations. Due to the lift-off phenomena, the foundation becomes softer and the dynamic response of the
plate becomes stronger when it is supported by a tensionless elastic foundation.

Fig. 3 shows the effect of the loading shape on the dynamic response of a moderately thick plate resting on a
Pasternak-type elastic foundation with (k1, k2) ¼ (10, 1). Three type of dynamic loading is considered, i.e.
sudden loads, step loads, and triangular loads, as defined by Eq. (23). It can be seen that the dynamic response
of the plate on a tensionless foundation becomes stronger than its counterpart under each of these dynamic
loading cases.

Fig. 4 shows the effect of the loaded area parameter (a1/a ¼ b1/b ¼ 0.3, 0.5 and 0.7) on the dynamic
response of a moderately thick plate subject to a suddenly applied load alone and resting on a Pasternak-type
elastic foundation with (k1, k2) ¼ (10, 1). As expected, these results show that the central deflections and
bending moments are decreased by decreasing the loaded area parameter either for tensionless foundation case
or conventional foundation case.

Fig. 5 shows the effect of initial membrane stress on the dynamic response of an initially stressed
plate subjected to a suddenly applied central patch load and resting on a Pasternak-type elastic foun-
dation with (k1, k2) ¼ (10, 1). Here, w ¼ 0 denotes uniaxial compression, and w ¼ 1 denotes equal
biaxial compression. The dimensionless compression is defined by Nx/(Nx)cr, in which (Nx)cr is the
critical buckling load for the plate under uniaxial compression in the X-direction, as previously
given in Ref. [22]. The results reveal that, although no initial deflections are induced by membrane
stresses, application of in-plane compression will result in considerable increase in both deflections and
bending moments.
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Fig. 2. Effect of foundation stiffness on dynamic behavior of a moderately thick plate: (a) central deflection versus time; and (b) bending

moment versus time.
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Fig. 6 shows the effect of initial thermal bending stress (T0 ¼ 30 1C, C ¼ 0.0, �3.0 and �5.0) on the
dynamic response of an initially heated plate subjected to a suddenly applied central patch load and resting on
a Pasternak-type elastic foundation with (k1, k2) ¼ (10, 1). It can be seen that both deflection and bending
moment are not zero-valued, and increase dramatically when the initial thermal bending was applied. It can be
found that the amplitudes of both deflection and bending moment become larger when the plate is supported
by a tensionless foundation, because the tensionless foundation model is relatively less constrained compared
to conventional one.

Vertical deflections along Y-axis at X ¼ 0 of the same plate subjected to a suddenly applied patch load alone
resting on a tensionless elastic foundation with (k1, k2) ¼ (10, 1) and under different pulse duration (t ¼ 1.0,
2.0 and 3.0) are shown in Fig. 7. Then Fig. 8 shows the effect of the foundation stiffness on the vertical
deflections along Y-axis at X ¼ 0 of the same plate subjected to a suddenly applied patch load alone under
pulse duration t ¼ 1.0 and resting on tensionless elastic foundations. The results show that the deflection
increases dramatically with increasing t. The plates do lift off the foundation at the plate edge region.
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The results confirm that the foundation stiffness has a significant effect on the dynamic response of the plate
on tensionless foundations.

5. Concluding remarks

Dynamic response analysis of an initially compressed or initially heated Reissner–Mindlin plate with four
free edges subjected to transverse partially distributed loads and resting on a tensionless elastic foundation has
been presented by using an analytical-numerical method. The advantage of present method is that the solution
is in an explicit form which is easy to program in computing deflection-time and bending moment-time as well
as mode shape curves without any assumption on the shape of the contact region. The difference between the
solutions for the conventional and tensionless foundations is noticeable when a partial lift-off is presented.
The results confirm that the plate will have stronger dynamic behavior than its counterpart when it is
supported by a tensionless elastic foundation.
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Appendix

The elements of the stiffness matrix K and the mass matrix M in Eq. (20) are as follows:

k11 ¼

Z p=2

�p=2

Z p=2

�p=2
�K1ð ÞH x; y; tð Þdxdy,
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�p=2
y2 cos 2nyþ

2n2b2 �1ð Þn

g2n

y2

� �
cos ix cos jydxdy

miþjþ1;mþ1 ¼

Z p=2

�p=2

Z p=2

�p=2
y2 cos 2mxþ

2m2 �1ð Þm

g1m

x2

� �
cos ix cos jydxdy,

miþjþ1;m�nþmþnþ1 ¼

Z p=2

�p=2

Z p=2

�p=2
y2
�1ð Þmþ1g1m nm2 þ n2b2

� �
nm2g3mn

cos 2mxþ
�1ð Þnþ1g2n m2 þ nn2b2

� �
nn2b2g3mn

cos 2ny

"

þ cos 2mx cos 2nyþ
2 �1ð Þmþnþ1n2b2

ng3mn

x2 þ
2 �1ð Þmþnþ1m2

nb2g3mn

y2

#
cos ix cos jydxdy,

mi�jþiþjþ1;nþ1 ¼

Z p=2

�p=2

Z p=2

�p=2
y2 cos 2nyþ

2n2b2 �1ð Þn

g2n

y2

� �
cos 2ix cos 2jydxdy,

mi�jþiþjþ1;mþ1 ¼

Z p=2

�p=2

Z p=2

�p=2
y2 cos 2mxþ

2m2 �1ð Þm

g1m

x2

� �
cos 2ix cos 2jydxdy,

mi�jþiþjþ1;m�nþmþnþ1 ¼

Z p=2

�p=2

Z p=2

�p=2
y2
�1ð Þmþ1g1m nm2 þ n2b2

� �
nm2g3mn

cos 2mxþ
�1ð Þnþ1g2n m2 þ nn2b2

� �
nn2b2g3mn

cos 2ny

"

þ cos 2mx cos 2nyþ
2 �1ð Þmþnþ1n2b2

ng3mn

x2 þ
2 �1ð Þmþnþ1m2

nb2g3mn

y2

#
cos 2ix cos 2jydxdy.

ðA:2Þ
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